				INDIAN SCHOOL AL WADI AL KABIR Class IX, Mathematics WORKSHEET- QUADRILATERALS				
OBJECTIVE TYPE (1 Mark)								
Q.1.	A diagonal of a rectangle is inclined to one side of the rectangle at 25°. The acute angle between the diagonals is							
	A	55°	B	50°	C	40°	D	25°
Q.2.	The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O . If $\angle D A C=32^{\circ}$ and $\angle A O B=70^{\circ}$, then $\angle D B C$ is equal to							
	A	24°	B	86°	C	38°	D	32°
Q.3.								
	A	30°	B	60°	C	120°	D	90°
Q.4.	If the degree measures of the angles of quadrilateral are $4 x, 7 x, 9 x$ and $10 x$, what is the sum of the measures of the smallest angle and largest angle?							
	A	140°	B	150°	C	168°	D	180°
Q.5.		figur ven in	is re.	diago $m \angle D A$	is ex	through	AD	nd AE is
	A	$22.5{ }^{\circ}$	B	45°	C	112.5°	D	135°
Q.6.	ABCD is a parallelogram. If its diagonals are equal, then find the value of $\angle A B C$.							
	A	45°	B	90°	C	180°	D	60°

Q. 7.		the perimeter of $\triangle \mathrm{AB}$	C,	perimeter of $\triangle \mathrm{PQR}$ is	n and A, B and C are	mid	ints.
	A	9 cm	B	36 cm	20 cm	D	18 cm
Q.8.							
		35°	B	75°	55°	D	105°
Q.9.	If the angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°, then the angles of the parallelogram are						
	A	$60^{\circ}, 120^{\circ}, 60^{\circ}, 120$	B	$70^{\circ}, 110^{\circ}, 50^{\circ}, 130^{\circ}$	$40^{\circ}, 140^{\circ}, 40^{\circ}, 140^{\circ}$	D	$80^{\circ}, 100^{\circ}, 80^{\circ}, 100$
	ASSERTION AND REASONING						
	DIRECTION: A statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option. (a)Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). (b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A). (c) Assertion (A) is true but Reason (R) is false. (d) Assertion (A) is false but Reason (R) is true.						
Q.10.	Assertion(A): ABCD and PQRC are rectangles and Q is a midpoint of AC. Then $\mathrm{DP}=\mathrm{PC}$.						

	Reason(R): The line segment joining the midpoint of any two sides of a triangle is parallel to the third side and equal to half of it.
Q.11.	Assertion(A): All parallelograms are quadrilateral. Reason (R) : All parallelograms are rectangles.
	Questions of 2 mark each
Q.12.	In the given figure, bisectors of $\angle B$ and $\angle D$ of quadrilateral ABCD meets CD and AB , produced at P and Q respectively. Prove that $\angle P+\angle Q=\frac{1}{2}(\angle A B C+\angle A D C)$
Q.13.	Find the ratio of the angles $\mathrm{D}: \mathrm{E}: \mathrm{F}$ of $\triangle \mathrm{DEF}$ formed by joining the midpoints of the sides of $\triangle \mathrm{ABC}$.
Q.14.	Diagonals AC and BD of a parallelogram ABCD intersect each other at O . If $\mathrm{OA}=3 \mathrm{~cm}$ and $\mathrm{OD}=2 \mathrm{~cm}$; determine the lengths of AC and BD.
	Questions of 3 mark each
Q.15.	ABCD is a square. $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are points on $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively such that $\mathrm{AE}=\mathrm{BF}=$ $\mathrm{CG}=\mathrm{DH}$. Prove that EFGH is a square.

Q.16.	In the given figure, ABCD is a parallelogram and $\angle D A B=60^{\circ}$. If the bisector AP and BP of angles A and B respectively meet P on CD . Prove that P is the mid point of CD .			
Q. 17.	In $\triangle A B C, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$ and perimeter of $\triangle A B C=25.5 \mathrm{~cm}$. If D, E and F are respectively the mid-points of AB, BC and CA , determine the length of DE and difference in the perimeter of $\triangle A B C$ and $\triangle D E F$.			
	Questions of 5 mark each			
Q.18.	PQ and RS are two equal and parallel line segments. Any point M not lying on PQ or RS is joined to Q and S and lines through P parallel to QM and through R parallel to SM meet at N . Prove that line segments MN and PQ are equal and parallel to each other.			
Q.19.	In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \\| \mathrm{DE}, \mathrm{BC}=\mathrm{EF}$ and $\mathrm{BC} \\| \mathrm{EF}$. Vertices A, B and C are joined to vertices $\mathrm{D} . \mathrm{E}$ and F respectively. Show that (i) Quadrilateral ABED is a parallelogram. (ii) Quadrilateral BEFC is a parallelogram. (iii) $\mathrm{AD} \\| \mathrm{CF}$ and $\mathrm{AD}=\mathrm{CF}$. (iv) quadrilateral ACFD is a parallelogram. (v) $\mathrm{AC}=\mathrm{DF}$ (vi) $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.			

Q20.	P is the midpoint of side AB of a parallelogram ABCD . A line through B parallel to PD meets DC at Q and AD produced at R . Prove that (i) $\mathrm{AR}=2 \mathrm{BC}$ (ii) $\mathrm{BR}=2 \mathrm{BQ}$
Q.21.	CASE STUDY QUESTION: The figure below shows the side view of a shopping trolley. The metal plate is fixed on the side by the store keeper for advertisement. Q.22.
What is the shape of the metal plate?	
One angle of a quadrilateral is of 108° and the remaining three angles are in the ratio 1:2:3. Find each of	
the three angles.	

	What is the value of $\angle \mathrm{EAC}$?							
Q.25.	What is the value of $\angle \mathrm{ABE}$?							
	ANSWERS							
	Q.1.	B	Q.2.	C	Q.3.	D	Q.4.	C
	Q.5.	A	Q.6.	B	Q.7.	D	Q.8.	C
	Q.9.	A	Q.10.	b	Q.11.	c	Q. 13	4:2:3
	Q. 14	$6 \mathrm{~cm}, 10 \mathrm{~cm}$	Q.15.	$\begin{gathered} 5.75 \mathrm{~cm}, 12.75 \\ \mathrm{~cm} \end{gathered}$	Q.21.	Acute	Q. 22	Parallelogram
	Q. 23	$42^{\circ}, 84^{\circ}, 126^{\circ}$	Q.24.	15°	Q.25.	30°		

